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Chapter 7 Homework 
 
PART A:  The Variational Principle and the Helium Atom 
 
1. An approximate wavefunction for the ground state of the PIB is:  
 
 
 Normalize this wavefunction and compute the expectation value for the energy, <E>.  

Compare your answer with the exact ground state energy ( 0.125h2/ma2 ). 
 
 
 
2. Consider the 3 electrons in a lithium atom, which has the electron configuration:  1s22s1. 
 
 (a)  Write the Hamiltonian for the electrons in a Lithium atom in (i) MKS (SI) units 
        and (ii) in atomic units. 
 
 (b)  Use the “Independent Particle Model” (i.e. ignore interelectronic repulsions)  
        to calculate the electronic energy of Lithium in atomic units.  Note:  You  
        can use the hydrogenlike atom equation to calculate the energy:  
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 (c)  The actual Lithium electronic energy (-7.48 a.u.) is higher than the approximate 
        energy you calculated in part (b).  Is this a violation of the Variational  
        Principle?  Why or why not? 
 
 
 
3. One variational wavefunction for helium that was discussed in the chapter is: 
 

 
 Both Z’ and b are variational parameters. 
 
 (a)  Do you expect the function above to give you a higher or lower calculated 

       energy than the function: 

        Explain your answer. 
 
 (b)  What is the purpose of the term (1 + br12) in the first wavefunction above? 
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4.  One may illustrate the Variational Principle by using a Variational trial function of the 
form below as an approximate solution to the ground state of the hydrogen atom.: 

 
 
 where  is a vrariational parameter.  It can be shown that the calculated energy 
 in atomic units is given by: 
 
 
 Determine the value of  that minimizes the energy and the computed energy  
 for this value of .  Compare your result with the exact hydrogen atom ground  
 state energy of –0.50 hartrees (a.u.). 
 
 
5. An approximate wavefunction for the ground state 
 of the Harmonic Oscillator is: 
 
 
 It can be shown that the expectation value for 
 the energy using this wavefunction is: 
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 We have set 2   to avoid confusion in the calculations. 
 
  (a)  Determine the value of 2 (i.e. ) which gives the lowest 
        value of the energy. 
 
 (b)  Use your result for part (a) to calculate the minimum energy, in units 
        of ħ  (Note:  Your result should be  0.5 ħ  ) 
        
        Note:  It will probably be useful to use: 
 
 
PART B:  Electron Spin and the Pauli Principle 
 
6. Indicate whether each of the functions is (i) symmetric, (ii) antisymmetric, or (iii) neither, 

with respect to electron exchange.  Note:  f and g are spatial functions. 
 
 (a) 
 
 (b) 

 
 (c)  

 
 (d)  
 
 (e)  
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7. Which of the following are valid wavefunctions for He? (Ignore Normalization) 
 
 (a)  1s(1)2s(2)(12 - 12) 
 
 (b)  [1s(1)2s(1) - 2s(1)1s(1)]12 
 
 (c)  [1s(1)2s(2) - 2s(1)1s(2)](12 - 12) 
 
 (d)  1s(1)2s(2)12 - 2s(1)1s(2)12 + 1s(1)2s(2)12 - 2s(1)1s(2) 12 
 
 
8. Consider the wavefunction,  = N( + c), where N and c are constants 
 
 (a)  Normalize the wavefunction,  (The result will contain the constant, c) 
 
 (b)  Find <sz> for this wavefunction. 
 
 
9. Write down the complete expression for the Coulomb Integral [J1s2p] and Exchange 

Integral [K1s2p] for the repulsive and exchange interactions between electrons in 1s and 2p 
orbitals, respectively.  Use atomic units and give your answer in (i)  standard double 
integral notation and (ii) “Bra-Ket” notation.. 

 
 
10. Consider the Helium excited state configuration 1s12p1. 
 
 
 
 
 or 

  
 

 
 (a) Calculate  the result of                         operating on the spin portion of the  

  wavefunction. 
 
 (b) Assume that the spatial atomic orbitals,                                       , are 
  orthonormal.  Show that the spatial and spin wavefunctions are  
  normalized 

 
 
  
    
  i.e. show that: 
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 (c) The Helium atom Hamiltonian is: 
 
 
 
 

  H1 and H2 are the one electron He+ ion Hamiltonians operating on the 
  coordinates of electron 1 and 2, respectively.  One can ignore the spin 

  wavefunction when evaluating the expectation value for the energy 
  because the Hamiltonian does not operate on the spin functions. 
 
  The expectation value for the energy is therefore: 
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  1s and 2p are the energies of a He+ ion in a 1s and 2p orbital, respectively. 

  J1s2p and K1s2p are the Coulomb and Exchange Integrals, given in the  
  last problem. 
 

 
PART C:  Many Electron Atoms 
 
11. Qualitative Questions  (see PowerPoint slides and class notes for answers) 

 (a)  What is the basic assumption behind the Hartree-Fock method? 
 (b)  Why is it necessary to solve the Hartree-Fock equations iteratively? 
 (c)  What is Koopman’s Theorem and what approximations have been made? 
 
12. Evaluate the following 3x3 determinants: 
 

 (a) 

461

385

279

  (b) 

6 3 4

2 4 3

1 6 4


   

 
 

13. (a)  Write the Hamiltonian for a Beryllium atom, in both SI and atomic units. 
 

 (b)  Write the normalized Slater Determinant for the ground state of Beryllium,  
         which has the configuration:  1s22s2 
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14. The  experimental Ionization Energies of the 3 electrons in Lithium are:  IE1=5.39 eV,  
 IE2=75.66 eV, and IE3=122.43 eV.  The computed Hartree-Fock (HF) energy of 
  Lithium is EHF(Li) = -7.432 au (hartrees).  The computed Hartree-Fock energies of Li+ 

  and Li- are:  EHF(Li+)= -7.236 au and EHF(Li-)= -7.427 au.   

 
 a)    Calculate the Correlation Energy of Lithium in (i)  au (hartrees) and (i) kJ/mol. 

 b)   Calculate the Hartree-Fock values of the First Ionization Energy and  
        the Electron Affinity of Lithium (in eV). 
        Note:  1 au = 27.21 eV = 2625 kJ/mol 
 
 
15. The energy of the highest Hartree-Fock occupied orbital in oxygen is = -0.616 au.   
 Estimate the First Ionization Energy of oxygen, in kJ/mol.  Why does it differ from the  
 experimenal value of 1314 kJ/mol. 
 
16. The Hamiltonian for a Lithium atom is: 
 
 
 
 
 
 
 
 
 
 
 Consider the following simple product wavefunction (non-Antisymmetrized) for a  
 ground-state Lithium atom (1s22s1): 
 
 
 
 
 
 (a)  Why does the expectation value for the energy not dependent upon Spin? 
 
 (b)  Calculate the expectation value of the energy, SpatSpat H  , in terms of: 

 
  1s:  Energy of an electron in a Li2+ 1s orbital 
 
  2s:  Energy of an electron in a Li2+ 2s orbital 
 

 
 

 
 

 
 (c)  Why does the energy not depend upon the Exchange Integral, K1s2s? 
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SOME “CONCEPT QUESTION” TOPICS 
 
Refer to the PowerPoint presentation for explanations on these topics. 
 
PART A:  The Variational Principle and the Helium Atom 
 

 The Independent Particle Model 

 The Variational Principle 

 Perturbation Theory Treatment of Helium 

 Variational Treament of Helium 

 
 
PART B:  Electron Spin and the Pauli Principle 
 

 The Permutation Operator 

 The Pauli Antisymmetry Principle (and relation to Exclusion Principle) 

 Spin Eigenfunctions ( and ) 

 Symmetric and Antisymmetric Spin Wavefunctions and Spatial Wavefunctions 

 The Spin Quantum Numbers (S and MS) 

 Spin and Spatial Wavefunctions of Excited State Helium 

 Relative Energies of Singlet and Triplet Excited State Helium (basis for difference). 

 Coulomb and Exchange Integrals 

 
 
PART C:  Many Electron Atoms 
 

 The Hamiltonian for Multielectron Atoms 

 The Hartree Method:  Qualitative Concepts and Interpretation of Equations 

 Reason for difference between total Hartree energy and sum of orbital energies 

 Koopman’s Theorem 

 Definitions of Ionization Energy and Electron Affinity 



 Antisymmetric Wavefunctions:  Slater Determinants (+ shorthand notation) 

 The Hartree-Fock Method:  Qualitative Concepts and Interpretation of Equations 

(difference from Hartree Method) 

 Coulomb and Exchange Integrals 

 Electron Correlation 

 
 
 
 
DATA 
 
h = 6.63x10-34 J·s    1 J = 1 kg·m2/s2 
ħ = h/2 = 1.05x10-34 J·s   1 Å = 10-10 m 

c = 3.00x108 m/s = 3.00x1010 cm/s  k·NA = R   
NA = 6.02x1023 mol-1    1 amu = 1.66x10-27 kg 
k = 1.38x10-23 J/K    1 atm. = 1.013x105 Pa 
R = 8.31 J/mol-K     1 eV = 1.60x10-19 J 
R = 8.31 Pa-m3/mol-K   1 au = 1 hartree (h) = 2625 kJ/mol 
me = 9.11x10-31 kg (electron mass) 
 
 



1

Slide 1

Chapter 7

Multielectron Atoms

Part A:  The Variational Principle and the Helium Atom

Part B:  Electron Spin and the Pauli Principle

Part C:  Many Electron Atoms

Slide 2

Part A:  The Variational Principle 
and the Helium Atom

• The Variational Method

• Applications of the Variational Method

• Better Variational Wavefunctions

• The Helium Atom

• Perturbation Theory Treatment of Helium

• Variational Method Treatment of Helium



2

Slide 3

The Variational Method

In quantum mechanics, one often encounters systems for which
the Schrödinger Equation cannot be solved exactly.

There are several methods by which the Equation can be solved
approximately, to whatever degree of accuracy desired.

One of these methods is Perturbation Theory, which was introduced
in Chapter 5.

A second method is the Variational Method, which is developed
here, and will be applied to the Helium atom Schrödinger Equation.

Slide 4

The Variational Theorem

This theorem states that if one chooses an approximate
wavefunction, , then the Expectation Value for the energy is
greater than or equal to the exact ground state energy, E0.

Proof:

Assume that we know the exact solutions, n:

 0
?

Note: I will outline the proof, but you are responsible only for the
result and its applications.
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In Chapter 2, it was discussed that the set of eigenfunctions, n,
of the Hamiltonian form a complete set. of orthonormal functions.

That is, any arbitrary function with the same boundary conditions
can be expanded as a linear combination (an infinite number of terms)
of eigenfunctions.

This can be substituted into the expression for <E> to get:

Slide 6

because

 orthonormality

because

Therefore:
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Applications of the Variational Method

The Particle in a Box

In Chapter 3, we learned that, for a PIB:

Ground
State

In a Chapter 2 HW problem (#S5), you were asked to show that

for the approximate PIB wavefunction

The expectation value for <p2> is

Let’s calculate <E>:
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0 a

X

exact

approx.

usingExact GS Energy:

usingApprox. GS Energy:

The approximate wavefunction gives a ground state energy that is
only 1.3% too high.

This is because the approximate wavefunction is a good one.

Slide 10

PIB:  A Second Trial Wavefunction

If one considers a second trial wavefunction:

It can be shown (with a considerable amount of algebra) that:

21.6% Error

The much larger error using this second trial wavefunction is not
surprising if one compares plots of the two approximate functions.

0 a

X

exact

approx.

0 a

X

exact

approx.
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PIB:  A Linear Combination of Combined Trial Wavefunctions

Let’s try a trial wavefunction consisting of a linear combination
of the two approximate functions which have been used:

or where

Because the Variational Theorem states that the approximate
energy cannot be lower than the exact Ground State energy, one can
vary the ratio of the two functions, R, to find the value that minimizes
the approximate energy.

This can be done using a method (solving a Secular Determinant) that
we will learn later in the course.  The result is:a

a)  Quantum Chemistry, 5th Ed., by I. N. Levine, pg. 226

and 0.0015% Error
Not bad!!

Slide 12

The agreement of approx. with exact is actually even better than it looks.

The two plots were perfectly superimposed and I had to add on a small

constant to exact so that you could see the two curves.

0 a

X

exact

approx.
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An Approximate Harmonic Oscillator Wavefunction

Exact HO Ground State:

Let’s try an approximate wavefunction:

 is a variational parameter, which
can be adjusted to give the
lowest, i.e. the best energy.

0

X

exact

approx.
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One can use app to calculate an estimate to the Ground State
energy by:

It can be shown that, when this expression is evaluated, one gets:

Because Eapp is a function of 2 (rather than ), it is more convenient
to consider the variational parameter to be  = 2.

where

Note:                   (will be needed later in the calculation).
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Eapp

The approximate GS energy is a function of the variational parameter, 

One “could” find the best value of ,
which minimizes Eapp, by trial and error.

But there must be a better way!!!

best 

where

Note:                   (will be needed later in the calculation).

Slide 16

Sure!!  At the minimum in Eapp vs. , one has:

On
Board

13.6% error (compared to E0 = 0.5 ħ)

It wasn’t that great a wavefunction
in the first place.

0

X

exact

approx.

where

On
Board

Note: We will use:
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The Helium Atom Schrödinger Equation

+Ze

-e -e

He:  Z=2

r1 r2

r12
The Hamiltonian

^ ^

KE(1) KE(2) PE(1) PE(2) PE(12)

Atomic Units:
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The Schrödinger Equation

 depends upon the
coordinates of both electrons

Can we separate variables?

??

Nope!!  The last term in the 
Hamiltonian messes us up.

Electron
Repulsion

Slide 20

The Experimental Electronic Energy of He

IE1 = 24.59 eV

IE2 = 54.42 eV

0

He

He+ + e-

He2+ + 2e-

E
n

er
g

y

EHe = -[ IE1 + IE2 ]

EHe = -[ 24.59 eV + 54.42 eV ]

EHe = -79.01 eV

or EHe = -2.9037 au (hartrees)

Reference State

By definition, the QM reference
state (for which E=0) for atoms
and molecules is when all nuclei
and electrons are at infinite
separation.
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The Independent Particle Model

If the 1/r12 term is causing all the problems, just throw it out.

Separation of Variables:  Assume that

=

E1
=

E2

Slide 22

and

Hey!!! These are just the one electron Schrödinger Equations for
“hydrogenlike” atoms.  For Z=2, we have He+.

We already solved this problem in Chapter 6.

Wavefunctions

Ground State Wavefunctions
(1s:  n=1,l=0,m=0)

Remember that in atomic units, a0 = 1 bohr
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Energies

Ground State Energy
(n1 = n2 = 1)

Z = 2 for He

Our calculated Ground State Energy is 38% lower than experiment.

This is because, by throwing out the 1/rl2 term in the Hamiltonian,
we ignored the electron-electron repulsive energy, which is positive.
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Perturbation Theory Treatment of Helium

The Helium Hamiltonian can be rewritten as:

where

H(0) is exactly solvable, as we just showed in the independent
particle method.

H(1) is a small perturbation to the exactly solvable Hamiltonian.
The energy due to H(1) can be estimated by First Order
Perturbation Theory.

Slide 26

The “Zeroth Order” Ground State energy is:

The “Zeroth Order” wavefunction is the product of He+

1s wavefunctions for electrons 1 and 2

Zeroth Order Energy and Wavefunction
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First Order Perturbation Theory Correction to the Energy

In Chapter 5, we learned that the correction to the energy, 
E  [or E(1)] is:

andFor the He atom:

Therefore: where

The evaluation of this integral is rather difficult, and in outlined
in several texts.

e.g. Introduction to Quantum Mechanics in Chemistry, by M. A. Ratner
and G. C. Schatz, Appendix B.

Slide 28

Therefore, using First Order Perturbation Theory, the total electronic
energy of the Helium atom is:

This result is 5.3% above (less negative) the experimental
energy of -2.9037 a.u.

However, remember that we made only the First Order Perturbation
Theory correction to the energy.

Order       Energy      % Error

0             -4.0  a. u.    -38%

1             -2.75            +5

2             -2.91          -0.2

13            -2.9037       ~0
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Variational Method Treatment of Helium

Recall that we proved earlier in this Chapter that, if one has an
approximate “trial” wavefunction, , then the expectation value
for the energy must be either higher than or equal to the true ground
state energy.  It cannot be lower!!

This provides us with a very simple “recipe” for improving the energy.
The lower the better!!

When we calculated the He atom energy using the “Independent
Particle Method”, we obtained an energy (-4.0 au) which was lower
than experiment (-2.9037 au).

Isn’t this a violation of the Variational Theorem??

No, because we did not use the complete Hamiltonian in our
calculation.
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A Trial Wavefunction for Helium

Recall that when we assumed an Independent Particle model for Helium,
we obtained a wavefunction which is the product of two 1s He+ functions.

For a trial wavefunction on which to apply the Variational Method,
we can use an “effective” atomic number, Z’, rather than Z=2.

By using methods similar to those above (Independent Particle Model
+ First Order Perturbation Theory Integral), it can be shown that

for Z = 2 for He

and

Slide 32

KE(1) KE(2) PE(1) PE(2) PE(12)

He:  Z = 2

Etrial

Z’

We want to find the value of Z’
which minimizes the energy, Etrial.

Once again, we can either use
trial-and-error (Yecch!!) or basic
Calculus.
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Etrial

Z’

At minimum:

For lowest Etrial:

(1.9% higher than experiment)

vs.

The lower value for the “effective” atomic number (Z’=1.69 vs. Z=2)
reflects “screening” due to the mutual repulsion of the electrons.
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A Two Parameter Wavefunction

One can improve (i.e. lower the energy) by employing improved
wavefunctions with additional variational parameters.

Better Variational Wavefunctions

Let the two electrons have different values of Zeff:

(we must keep treatment of the
two electrons symmetrical)

If one computes Etrial as a function of Z’ and Z’’ and then finds
the values of the two parameters that minimize the energy,
one finds:

Z’ = 1.19
Z’’ = 2.18

Etrial = -2.876 au (1.0% higher than experiment)

The very different values of Z’ and Z’’ reflects correlation between
the positions of the two electrons; i.e. if one electron is close to the 
nucleus, the other prefers to be far away.
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Another Wavefunction Incorporating Electron Correlation

The second term, 1+br12, accounts for electron correlation.

Z’ = 1.19
b = 0.364

Etrial = -2.892 au (0.4% higher than experiment)

When Etrial is evaluated as a function of Z’ and b, and the values of
the two parameters are varied to minimize the energy, the results are:

It increases the probability (higher 2) of finding the two electrons
further apart (higher r12).
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A Three Parameter Wavefunction

Z’ = 1.435
Z’’ = 2.209
b = 0.292

Etrial = -2.9014 au (0.08% higher than experiment)

When Etrial is evaluated as a function of Z’, Z’’ and b, and the values of
the 3 parameters are varied to minimize the energy, the results are:

We have incorporated both ways of including electron correlation.

Even More Parameters

When we used a wavefunction of the form:

The variational energy was within 0.4% of experiment.

We can improve upon this significantly by generalizing  to:

g(r1,r2,r12) is a polynomial function of the 3 interparticle distances.

(0.003% higher than experiment)

Hylleras (1929) used a 9 term polynomial (10 total parameters) to
get:  Etrial = -2.9036 au

(~0% Error)

Kinoshita (1957) used a 38 term polynomial (39 total parameters) to
get:  Etrial = -2.9037 au

To my knowledge, the record to date was a 1078 parameter
wavefunction [Pekeris (1959)]

Slide 38



20

Slide 39

Wavefunction       Energy      % Error

A Summary of Results

Eexpt. = -2.9037 au

-2.75  au      +5.3%

-2.848          +1.9%

-2.876          +1.0%

-2.892          +0.4%

-2.9014        +0.08%

(39 parameters)

-2.9037         ~0%

Notes: 1.  The computed energy is always higher than experiment.

2.  One can compute an “approximate” energy to whatever
degree of accuracy desired.
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KE(1) KE(2) PE(2)PE(1) PE(12)

H1 and H2 are the one electron Hamiltonians for He+

The Helium Hamiltonian and Wavefunctions

The Helium Hamiltonian (Chapter 7) is:

In the ground state, both electrons are in 1s orbitals and the
wavefunction can be written as:

We will assume that each 1s orbital is already normalized.

Slide 4

The Helium Ground State Energy
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11

1

This is the energy of an electron in the 1s orbital of a He+ ion.

2

2

J1s1s is called the Coulomb Integral.
This is the total repulsion energy between the two 1s electrons.

We will compare this energy of ground state Helium with
the energy of excited state Helium in a later section.
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Further comments on the Coulomb Integral

Coulomb Integral:  Electron-Electron Repulsion.

To better understand this integral, it is convenient to rewrite it
in SI units with the traditional integral format.

From this last equation, we see that the Coulomb Integral is really
just adding up the product of the two charges divided by the
distance between them over all possible volume elements.
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Electron Spin

We’ve known since Freshman Chemistry or before that electrons have
spins and there’s a spin quantum number (there actually are two).

Yet, we never mentioned electron spin, or the Pauli Exclusion Principle
(actually the Pauli Antisymmetry Principle), in our treatment of 
ground state Helium in Chapter 7.

This is because Helium is a closed shell system.
That is, its electrons fill the n=1 shell.

As we shall see, in open shell systems, such as the Lithium atom
(1s22s1) or excited state Helium (e.g. 1s12s1), the electron’s spin
and the Pauli Principle play an important role in determining
the electronic energy.
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A Brief Review of Orbital Angular Momentum in Hydrogen

The wavefunction for the
electron in a hydrogen atom is:

An electron moving about the nucleus in a hydrogen atom has
orbital angular momentum.

^

In addition to being  eigenfunctions of the Hamiltonian (with
eigenvalues En), the wavefunctions are eigenfunctions of the
angular momentum operators, L2 and Lz:

^ ^

^

Shorthand
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Do Electrons Spin??

I don’t know.  I’ve never seen an electron up close and personal.

What can be said is that their magnetic properties are consistent with
the hypothesis that they behave “as though” they are spinning.

When a beam of electrons is directed
through a magnetic field, they behave
like little magnets, with half of their
North poles parallel and half antiparallel
to the magnetic field’s North pole.

Because a rotating charge is known to
behave like a magnet, the electrons
are behaving as though they are spinning
in one of two directions about their
axes.
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Spin Angular Momentum and Quantum Numbers

A rotating (or spinning) charge possesses angular momentum.

To characterize the spin angular momentum of an electron, two new
quantum numbers are introduced, s and ms (analogous to l and ml), 
with s = ½ and ms = ½.

In direct analogy to orbital angular momentum, spin angular momentum
operators are introduced with the properties that:

The state of the electron is characterized by s and ms and is written as:

^

and

^ ^
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Because one always has s = ½, the standard shorthand is:

^ ^
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Orthonormality of the Spin Wavefunctions

One can define integrals of the spin functions in analogy to integrals
of spatial wavefunctions, keeping in mind that one is not really using
calculus to evaluate integrals.  Their values are defined below:

Therefore, by definition, the spin wavefunctions are orthonormal.

By definition

By definition

By definition

By definition
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The Pauli Principle

The Permutation Operator

By definition, this operator permutes (i.e. exchanges) two particles
(usually electrons) in a wavefunction.

For a 2 electron system:

This is an eigenvalue equation, with eigenvalue pij.

Permuting two identical particles will not change the probability

density:

Therefore:
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The Pauli Principle

Postulate 6: All  elementary particles have an intrinsic angular momentum
called spin.  There are two types of particles, with different
permutation properties:

Electrons (s = ½) are fermions.  

Therefore, electronic wavefunctions are antisymmetric with respect

to electron exchange (permutation).

Fermions include electrons, protons, 3He nuclei, etc.

Bosons include 4He nuclei (s=0), 2H nuclei (s=1), etc.

Bosons:    Integral spin (0, 1, 2,…)           Pij() = +

Fermions: Half integral spin (1/2, 3/2,…)  Pij() = -

Note that the permutation operator exchanges both the spatial and
spin coordinates of the electrons.
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Inclusion of Spin in Helium Atom Wavefunctions
The Hamiltonian for Helium does not contain any spin operators.
Therefore, one can take the total wavefunction to be the product
of spatial and spin parts.

If we use the approximation that the spatial part can be represented
by 1s orbitals for each electron, then 4 possibilities for the
total wavefunction are:

Shorthand Notation:

Electron 1 has  spin.  
Electron 2 has  spin.

Electron 1 has  spin.
Electron 2 has  spin.

Electron 1 has  spin.
Electron 2 has  spin.

Electron 1 has  spin.
Electron 2 has  spin.
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None of these 4 functions satisfies the
Pauli Antisymmetry Principle.

Similarly:

Similarly:

We can construct a linear combination of 1 and 2 that does satisfy
the Pauli Principle.

A wavefunction that satisfies the Pauli Principle

Thus,  is antisymmetric with respect to electron exchange, as required
by the Pauli Principle.
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Two electrons in an atom cannot have the same set of 4 quantum
numbers, n, l, ml and ms.  That is, if two electrons have the same
spatial part of the wavefunction (100 for both electrons in the
Helium ground state), then they cannot have the same spin.

The wavefunction, , can be written as the product of a
spatial and spin part:

Note:   The sum of 1 and 2 would not be a
satisfactory wavefunction.

Because and
neither of these functions can be used in the
construction of an antisymmetric wavefunction

This is the basis for the more famous, but less general, form
of the Pauli Principle, known as the Exclusion Principle:
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Normalization of the Antisymmetric Wavefunction

We must integrate over both the spin and
spatial parts of the wavefunction.

=

1

=

1

We assume that the individual spatial wavefunctions have already
been normalized.

or

=

1

=

1
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=

1
=

1

=

0

=

0

=

0

=

0

=

1

=

1
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Spin and the Energy of Ground State Helium

Would its inclusion have affected the results?

Earlier in this chapter, prior to reducing electron spin, we showed
that the energy of ground state helium is given by:

We will examine this question below.

The expression for the expectation value of the energy is given by:
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We can factor out the spin part of the wave function
because H is independent of spin

Thus, inclusion of the spin portion of the wavefunction has no
effect on the computed energy in a closed shell system such
as ground state Helium.

Note: It can be shown that one arrives at the same conclusion if
a more sophisticated spatial function is used to characterize the
two electrons.
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Spin Angular Momentum of Ground State Helium

z-Component of Spin Angular Momentum

For a two electron system, the operator for Sz is

Therefore

Therefore, the eigenvalue of Sz is 0.  The z-component of
angular momentum is MS = 0.

^
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Total Spin Angular Momentum

Therefore, we will just present the results.

The S2 operator for a two electron system and the calculation of
the eigenvalue of this operator is significantly more complicated
than the calculation of the z-component.

^

The result is
^

Thus, for ground state Helium: S=0 and MS=0

We say that GS helium is a “singlet” because there is only
one possible combination of S and MS (0 and 0).

This calculation requires application of spin raising and lowering
operators (introduced in various texts**), and is a digression 
from our prime focus.

**See for example, “Quantum Chemistry”, by I. N. Levine (5th. Ed.)
Sect. 10.10



14

Slide 27

Generalization

Some possible combinations of S and MS that can be encountered
are given in the table below

In general, the spin wavefunctions of multielectron atoms are
eigenfunctions of S2 and Sz, with eigenvalues S(S+1)ħ2 and MSħ .^^

^

S                  MS Designation

0                     0                    Singlet

1/2             1/2, -1/2              Doublet

1 1, 0, -1               Triplet

3/2       3/2, 1/2, -1/2, -3/2     Quartet
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The Wavefunctions of Excited State Helium

In ground state Helium, we were able to write the wavefunction
as the product of spatial and spin parts.

I have included the normalization constant with the spin function,
which is what it is normalizing (it is assumed that the spatial part
includes its own normalization constant)

In ground state Helium, the spatial wavefunction is symmetric
with respect to electron exchange.  Therefore, it is necessary for
the spin function to be antisymmetric with respect to exchange
in order to satisfy the Pauli Principle.

If one of the electrons is excited to the 2s orbital to give He(1s12s1),
the spatial wavefunction can be either symmetric or antisymmetric
with respect to electron exchange, broadening the possibilities for
valid spin functions.
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Neither nor
are valid spatial wavefunctions because they are  neither symmnetric
nor antisymmetric with respect to the exchange of the two electrons.

Symmetric and Antisymmetric Spatial Wavefunctions

However, one can “build” combinations of these wavefunctions that 
are either symmetric or antisymmetric with respect to electron exchange.

Symmetric

We have denoted this as a symmetric function, because it is easy

to show that:

Antisymmetric

For this function
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Symmetric and Antisymmetric Spin Wavefunctions

Two symmetric spin wavefunctions are:  12 and 12 because

and

We could not use either of these symmetric spin functions for
ground state Helium because the symmetric spatial function required
that we must have an antisymmetric spin function to satisfy
the Pauli Principle.

A third symmetric spin wavefunction is:

It is straightforward to apply the permutation operator, P12, to this
function to prove that it is symmetric with respect to exchange.

As shown when discussing ground state Helium, a spin wavefunction
that is antisymmetric with respect to electron exchange is:
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S and MS of the Spin Wavefunctions

Therefore, MS=+1 for

Similarly,  MS=0   for

MS=-1 for

Therefore, S=1 for the 3 symmetric spin wavefunctions.

Together, these functions are a triplet with S=1 and MS=+1,0,-1.

Using advanced methods,** (you are not responsible for it), one 
can show that when the S2 operator is applied to any of the 
3 symmetric spin functions, the eigenvalue is 2ħ2 [ = S(S+1) ħ2 ].

**e.g. Introduction to Quantum Mechanics in Chemistry, by M. A. Ratner
and G. C. Schatz, Sect. 8.3
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When Sz operates on the antisymmetric spin function

one finds that MS=0.

It can be shown that when S2 operates on this function, the
eigenvalue is 0.  Therefore, S=0 for the antisymmetric spin function.

Therefore the antisymmetric spin wavefunction is a singlet, 
with S=0 and MS=0.
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The Total Wavefunction for Excited State Helium

Spatial Wavefunctions Spin Wavefunctions

Singlet

Triplet

One can write the total wavefunction as the product of spin and
spatial parts.
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Singlet Wavefunction

Triplet Wavefunctions
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Excited State Helium Energies:  He(1s12s1)

The expectation value for energy is given by:

The Helium Hamiltonian is:

KE(1) KE(2) PE(2)PE(1) PE(12)

H1 and H2 are the one electron Hamiltonians for He+
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Triplet State Energy

Because the Hamiltonian does not contain any spin operators,
the above expression can be simplified.

Note that the energy does not depend directly on the spin
wavefunction. 

It is the fact that the triplet state symmetric spin wavefunction
requires us to use the antisymmetric spatial wavefunction that
affects the calculated energy.
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We have assumed that the spatial wavefunction is normalized,
in which case the denominator is 1.

The energy can then be calculated from:

Slide 40



21

Slide 41

where

Similarly,
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0
||

0
||
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where

Similarly,
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where

1

1.  Energy of electron in 1s He+ orbital

2

2.  Energy of electron in 2s He+ orbital

3

3.  Coulomb (repulsion) Integral

4

4.  Exchange Integral
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1 2 3 4

4.  Exchange Integral

3.  Coulomb (repulsion) Integral

The integrand of the Coulomb integral represents the repulsion of
two infinitesimal electron densities, (1)=1s(1)2 and  (2)=2s(2)2,
separated by a distance, r12.  The repulsion is summed over all
infinitesimal electron densities.

Arises purely from the antisymmetry of the spatial function with respect
to electron exchange.  It has no classical analog.

If the above calculation had been performed with a simple product
wavefunction, spat = 1s(1)2s(2), there would be no exchange integral

Always positive

Usually positive
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Singlet State Energy

Triplet: One of 3 components of the Triplet

Singlet:
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Because the exchange integral is almost always positive, the
energy of excited triplet state Helium is lower than that of the
excited state singlet. 

The physical basis for the lower energy of the triplet is that
the wavefunction (and therefore the probability) is small when
the coordinates of the two electrons are close to each other.

Therefore, the electron-electron repulsion energy is minimized
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Chapter 7

Multielectron Atoms

Part C:  Many Electron Atoms

Slide 2

Part C:  Many Electron Atoms

• The Hamiltonian for Multielectron Atoms

• The Hartree-Fock Method

• The Hartree Method: Helium

• Hartree-Fock Orbital Energies for Argon

• Extension to Multielectron Atoms

• Antisymmetrized Wavefunctions:  Slater Determinants

• Electron Correlation

• Koopman’s Theorem



2

Slide 3

The Hamiltonian for Multielectron Atoms

Atomic Units:

Helium

Z = 2SI Units:

Multielectron Atoms

Elect
KE

Elect-
Nuc
PE

Elect-
Elect
PE
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Atomic Orbitals

In performing quantum mechanical calculations on multielectron
atoms, it is usually assumed that each electron is in an atomic orbital, ,
which can be described as a Linear Combination of Hydrogen-like
orbitals, which are called Slater Type Orbitals (STOs).

Thus:  

The goal of quantum mechanical calculations is to find the values
of the ci which minimize the energy (via the Variational Principle).

These STOs are also used to characterize the Molecular Orbitals
occupied by electrons in molecules.

We will discuss these STOs in significantly greater detail in
Chapter 11, when we describe quantum mechanical calculations
on polyatomic molecules.

These STOs are usually denoted as i (although some texts
and articles will use a different symbol).
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The Hartree Method:  Helium

Hartree first developed the theory, but did not consider that
electron wavefunctions must be antisymmetric with respect to
exchange.

Fock then extended the theory to include antisymmetric wavefunctions.

We will proceed as follows:

1.  Outline Hartree method as applied to Helium

2.  Show the results for atoms with >2 electrons

3.  Discuss antisymmetric wavefunctions for multielectron atoms
(Slater determinants)

4.  Show how the Hartree equations are modified to get the
the “Hartree-Fock” equations.
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Basic Assumption

Each electron is in an orbital, i (e.g. a sum of STOs).

The total “variational” wavefunction is the product of one electron

wavefunctions:

Procedure

Let’s first look at electron #1.  Assume that its interaction with the
second electron (or with electrons #2, #3, #4, ... in multielectron atoms)
is with the average “smeared” out electron density of the second
electron.

SI Units

or

Atomic Units

“Guess” initial values the individual atomic orbitals:

(This would be an initial set of coefficients in the
linear combination of STOs).  i.e.   
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It can be shown (using the Variational Principle and a significant
amount of algebra) that the “effective” Schrödinger equation for
electron #1 is:

elect
KE

elect-
Nuc
PE

“Effective”
elect-elect

PE

This equation can be solved exactly to get a new estimate
for the function, 1

new (e.g. a new set of coefficients of the
STOs).

There is an analogous equation for 2:

This equation can be solved exactly to get a new estimate
for the function, 2

new (e.g. a new set of coefficients of the
STOs).
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What can we do to fix the problem that the orbitals resulting from
solving the effective Schrödinger equations are not the same as
the orbitals that we used to construct the equations??

A Problem of Consistency

We used initial guesses for the atomic orbitals,                              ,
to compute V1

eff and V2
eff in the Hartree Equations:                    . 

We then solved the equations to get new orbitals,

If these new orbitals had been used to calculate                     ,

we would have gotten different effective potentials.

Oy Vey!!! What a mess!!!
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The Solution:  Iterate to Self-Consistency

Repeat the procedure.  This time, use

to construct                       and solve the equations again. 

BUT: You have the same problem again.  The effective Hamiltonians
that were used to compute this newest pair of orbitals were constructed
from the older set of orbitals.

(1) go insane

Now, you’ll get an even newer pair of orbitals,

(2) quit Chemistry and establish
a multibillion dollar international
trucking conglomerate (please
remember me in your will).

Well, I suppose you could repeat the procedure again, and again, and
again, and again, until you either:
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Fortunately, the problem is not so dire.  Usually, you will find that
the new orbitals predicted by solving the equations get closer and
closer to the orbitals used to construct the effective Hamiltonians.

When they are sufficiently close, you stop, declare victory, and go
out and celebrate with a dozen Krispy Kreme donuts (or pastrami
sandwiches on rye, if that’s your preference).

When the output orbitals are consistent with the input orbitals,
you have achieved a “Self-Consistent Field” (SCF).

Often, you will reach the SCF criterion within 10-20 iterations,
although it may take 50-60 iterations or more in difficult cases.

While the procedure appears very tedious and time consuming,
it’s actually quite fast on modern computers.  A single SCF calculation
on a moderate sized molecule (with 50-100 electrons) can take well
under 1 second.
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The Energy

A.  The total energy

where

H1 and H2 are just each the Hamiltonian for the electron in a He+ ion.

We’re assuming that 1 and 2 have both been normalized.
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I1 is the energy of an electron in a He+ ion.

I2 is the energy of an electron in a He+ ion.

J12 is the Coulomb Integral and represents the 
coulombic repulsion energy of the two electrons

Remember, this is the total energy of the two electrons.
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The Energy

B.  The Individual Orbital Energies, 1 and 2

Note: You are not responsible for the details of the calculation
below - just the final comparison (slide after next)
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The Energy

B.  The Individual Orbital Energies, 1 and 2 (Cont’d.) 

Analogously, one finds for 2:
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The sum of orbital energies:

C.  Total Energy versus sum of orbital energies

The sum of orbital energies:

The total energy:

The sum of the orbital energies has one too many Coulomb
integrals, J12.

The reason is that each orbital energy has the full electron-electron
repulsion – You’re counting it one time too many!!!
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Therefore:

We conclude that one must subtract the Coulomb repulsive energy, J12,
from the sum of orbital energies, 1+2, to correct for the double counting 
of the repulsion between the two electrons.
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Koopman’s Theorem

Estimation of Atomic (or Molecular) Ionization Energies

Ionization Energy (IE): M  M+ + e- M is a neutral atom or molecule

I2 is the energy of the He+ ion

E is the energy of the He atom

Koopman’s Theorem: The ionization energy of an atom or molecule
can be estimated as -H, which is the orbital
energy of the highest occupied orbital.
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Koopman’s Theorem: The ionization energy of an atom or molecule
can be estimated as -H, which is the orbital
energy of the highest occupied orbital.

M  M+ + e- M is a neutral atom or molecule

There are two approximations in using Koopman’s theorem to estimate
ionization energies which limit the accuracy:

1.  Electron “relaxation” of the remaining N-1 electrons is neglected.

2. Differences in the “correlation energy” [to be discussed later]
of the electrons in the ion and neutral atom are ignored.

To obtain an accurate estimate of the ionization energy, one should
perform quantum mechanical energy calculations on the neutral
atom and ion to get E(M) and E(M+), from which the IE can be
computed by the definition.
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Electron Affinity

Electron Affinity (EA): M + e-  M- M is a neutral atom or molecule

Note: The “old” definition of Electron Affinity is the energy “released”
when an electron is added to a neutral atom.

EA(old) = - EA(new)

With this “new” definition of Electron Affinity, a negative
value of EA means that adding an electron to the atom
is an exothermic process.
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The Hartree Method for Multielectron Atoms

elect
KE

elect-
Nuc
PE

“Effective”
elect-elect

PE

The Hartree method for the more general N electron atom is a 
straightforward extension of the method outlined for the two electrons
in Helium

Each of the N electrons has an effective Hamiltonian.  For electron #1,
for example:

As before, we are assuming that electron #1 is interacting with the
“smeared out” electron density of electrons #2 to N.
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There are equivalent equations for each electron, i, of the N electrons:

As in the two electron case, one assumes that the total wavefunction
is the product of one electron wavefunctions:

Initial guesses are made for each of the atomic functions, i
init, which

are used to compute the effective potentials, Vi
eff, and the N equations

are solved to get a new set of ’s.

The procedure is repeated (iterated) until the guess wavefunctions are
the same as the ones which are computed; i.e. until you reach a
Self-Consistent Field (SCF)
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The Energy

i is the orbital energy of the i’th. electron.  This is the
eigenvalue of the effective Hamiltonian for the i’th. electron

Jij is the Coulomb Integral describing the repulsion between
an electron in orbital i and an electron in orbital j.

Note: If N=2 (i.e. He), the above expression for E reduces to
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Math. Preliminary:  Determinants

A determinant of order N is an NxN array
of numbers (elements).  The total number of 
elements is N2.

Second Order Determinant

Third (and higher) Order Determinant: Expansion by Cofactors

Note:  The expansion has 2 terms

Note:  The expansion has 6 terms
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Example:  Determinant Expansion/Evaluation

Determine the numerical value of the determinant:  
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Fourth Order Determinant

Note:  Each 3x3 determinant has 6 terms.
Therefore, the 4x4 determinant has 4x6 = 24 terms.

Property #1:  An NxN determinant has N! terms.

Property #3: If two columns or rows of a determinant are the same, 
then the value of the determinant is 0.

Property #2: If two columns or rows of a determinant are exchanged,
then the value of the determinant changes sign.

General Properties of Determinants
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Slater Determinants

Review:  The Pauli Antisymmetry Principle

The permutation operator, Pij , exchanges the coordinates of two
electrons in a wavefunction.

^

Permuting two identical particles will not change the probability

density:

Therefore:

Pauli Principle: All  elementary particles have an intrinsic angular 
momentum called spin.  There are two types of particles, 
with different permutation properties:

Bosons:    Integral spin (0, 1, 2,…)           Pij() = +

Fermions: Half integral spin (1/2, 3/2,…)  Pij() = -
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Note that the permutation operator exchanges both the spatial and
spin coordinates of the electrons.

Electrons (s = ½) are fermions.  

Therefore, wavefunctions are antisymmetric with respect to 

electron exchange (permutation).

or

Shorthand

Review:  Ground State Helium

or

Factored Form

This wavefunction is antisymmetric
with respect to exchange of
electrons 1 and 2.
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The electron configuration of ground state Lithium is 1s22s1.

The wavefunction,                                                 , just won’t do.

It’s not either symmetric or antisymmetric with respect to 
electron exchange.

An appropriate antisymmetric wavefunction is:

Question: How do I know that this wavefunction is antisymmetric?

Answer: Try it out.  Exchange electrons 1 and 2.

Terms 1 and 3 switch with each other, but each with opposite sign.

Terms 2 and 5 switch with each other, but each with opposite sign.

Terms 4 and 6 switch with each other, but each with opposite sign.

Voila!!  The wavefunction has changed sign.



17

Slide 33

Question: How did I figure out how to pick out the appropriate six terms?

Answer: It was easy!! Mookie showed me how.

Problem: The Mookster won’t be around to write out the antisymmetric
wavefunctions for you on a test.

Solution: I guess I should impart the magic of King Mookie, and show
you how it’s done.
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Slater Determinants

It can be written as a 2x2 determinant, called a Slater determinant
(named after J. C. Slater, who first came up with the idea).

The ground state Helium wavefunction is:

Note that different “spinorbitals"** are put in different columns.

**A spinorbital is just the combination of the spatial and spin part
of an orbital taken together.

Different electrons are put in different rows.

The coefficient is to normalize the antisymmetrized wavefunction.
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Two properties of determinants come in very handy.

Property #2:  If two columns or rows of a determinant are exchanged,
then the value of the determinant changes sign.

Hey!!  That’s nice!!

A Slater Determinant is automatically antisymmetric with respect to
the exchange of two electrons.
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Property #3:  If two columns or rows of a determinant are the same, 
then the value of the determinant is 0.

Let’s put both electrons in the same spinorbital, say 1s,
and see what happens.

This explains the more commonly stated form of the Pauli Principle:

No two electrons can occupy the same orbital with the same spin.
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The Lithium Ground State Wavefunction

The electron configuration of ground state Lithium is 1s22s1.

The antisymmetrized wavefunction is:

Expanding the wavefunction

The factor,       ,is to normalize the wavefunction (which has 3! terms)
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We discussed earlier that this expanded (6 term) wavefunction
is antisymmetric with respect to electron exchange.
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The antisymmetry can also be shown by using the property of
determinants.

Exchanging two electrons:

Let’s put all 3 electrons in the 1s orbital:
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General

Shorthand Notations (Various types)

Use bars to indicate  spin.  Lack of a bar means the spin is 
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Show diagonal terms only.           Lithium

Beryllium

Other shorthand notations include:

Leaving out the normalization constant.

Leaving out the normalization constant and electron numbering.

Beryllium

To avoid confusion, the only shorthand I might use is the diagonal
form at the top of this page.
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Part C:  Many Electron Atoms

• The Hamiltonian for Multielectron Atoms

• The Hartree-Fock Method

• The Hartree Method: Helium

• Hartree-Fock Orbital Energies for Argon

• Extension to Multielectron Atoms

• Antisymmetrized Wavefunctions:  Slater Determinants

• Electron Correlation

• Koopman’s Theorem
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The Hartree-Fock Method

Hartree’s original method neglected to consider that the wavefunction
in a multielectron atom (or molecule) must be antisymmetric with respect
to electron exchange.

The Hartree-Fock is an extension, using antisymmetrized wavefunctions.

It results in additional “Exchange” terms in the Effective Hamiltonians

and “Exchange Integrals” in the expression for the energy.

We actually encountered Exchange Integrals when we calculated
the energy of excited state Helium in the 1s12s1 electron configuration.
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Review:  The Energy of Triplet State Helium (1s12s1)

Remember that spin does not contribute directly to the energy.
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where

1

1.  Energy of electron in 1s He+ orbital

2

2.  Energy of electron in 2s He+ orbital

3

3.  Coulomb (repulsion) Integral

4

4.  Exchange Integral
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1 2 3 4

If the above calculation had been performed with a simple product
wavefunction, spat = 1s(1)2s(2), there would be no exchange integral

The integrand of the Coulomb integral represents the repulsion of
two infinitesimal electron densities, (1)=1s(1)2 and  (2)=2s(2)2,
separated by a distance, r12.  The repulsion is summed over all
infinitesimal electron densities.

3.  Coulomb (repulsion) Integral

Always positive

Arises purely from the antisymmetry of the spatial function with respect
to electron exchange.  It has no classical analog.

4.  Exchange Integral

Usually positive
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The Hartree-Fock Energy

Hartree Energy: Using simple product wavefunction:
not antisymmetric w.r.t. exchange

Jij is the Coulomb Integral describing the repulsion between
an electron in orbital i and an electron in orbital j.
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Hartree-Fock Energy:

Using antisymmetrized wavefunction: Slater Determinant

Coulomb
Integral

Exchange
Integral

The Exchange Integral arises from the antisymmetry of the wavefunction,
and has no classical analog.
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• The Hamiltonian for Multielectron Atoms

• The Hartree-Fock Method

• The Hartree Method: Helium

• Hartree-Fock Orbital Energies for Argon
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Hartree-Fock Orbital Energies for Ar

-3227 eV

-335 eV

-260 eV

-34.8 eV

-16.1 eV

0 eV

1s

2s

2p

3s

3p

Separated particles

Note that the ns and np orbitals have different
energies.  This is due to screening of the p electrons.

Koopman’s Theorem
IE  -

Electron
Removed

1s

2s

2p

3s

3p

IE(exp)

3206 eV

--

249

29.2

15.8

IE(Koop)

3227 eV

335

260

34.8

16.1
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Part C:  Many Electron Atoms

• The Hamiltonian for Multielectron Atoms

• The Hartree-Fock Method

• The Hartree Method: Helium

• Hartree-Fock Orbital Energies for Argon
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• Antisymmetrized Wavefunctions:  Slater Determinants

• Electron Correlation

• Koopman’s Theorem
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Electron Correlation

The principal approximation of the Hartree-Fock method is that a
given electron interacts with the “smeared-out” electron density of
the remaining N-1 electrons.

Actually, the other N-1 electrons are point particles, just like the
one we’re considering.

Thus, the motion of the electrons are correlated.  That is, they try to
avoid each other.

High
Energy

Not favored

Low
Energy

Favored
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Because the Hartree-Fock (HF) method does not consider the
specific electron-electron repulsions, which tend to keep two 
electrons apart, the HF energy is invariably too high.

The difference between the “exact” electronic energy and the
HF energy is called the “Correlation Energy”, Ecorr.

0

EHF

EExact

E
H

F

E
E

xa
ct

Generally, the correlation energy is very small
compared to the total energy (usually <1%)

However, in absolute terms, this can still represent
a rather large energy.

The “exact” electronic energy can be measured
as the negative of the sum of the Ionization Energies.
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EHF

EExact

E
co

rr

Helium

EHF = -2.862 au

EExact = -2.904 au

However, the correlation energy can still be very large in 
absolute terms.
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EHF

EExact

E
co

rr

Argon

EHF = -526.807 au

EExact = -527.030 au

However, the correlation energy can still be very large in 
absolute terms.

For many applications (e.g. geometries and frequencies), inclusion
of the correlation energy is not that important.

However, for applications involving bond breaking and bond making
(e.g. reactions), inclusion of the correlation energy is critical in order 
to get good results.

We will qualitatively discuss methods used to determine the
correlation energy in a later chapter.
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An Example:  Calculated Ionization Energy and
Electron Affinity of Fluorine

Ionization Energy (IE): M  M+ + e- M is a neutral atom or molecule

Electron Affinity (EA): M + e-  M- M is a neutral atom or molecule

Methods: E(HF) = HF/6-311++G(3df,2pd) Hartree-Fock Energy

E(QCI) = QCISD(T)/6-311++G(3df,2pd) Correlated Energy

This is the HF energy with a correction for electron correlation
calculated at the QCISD(T) level  (later Gator).
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Species     E(HF)          E(QCI)

F         -99.402 au    -99.618 au

F+ -98.825         -98.984

F- -99.446         -99.737

Similarly:

Similarly:
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Quantity

IE

EA

Expt.

1681 kJ/mol

-328

HF

1514 kJ/mol

-115

QCI

1664 kJ/mol

-312

Koopman’s Theorem IE

Energy of highest occupied orbital at HF/6-311++G(3df,2pd) level

H = -0.733 au

IE  -H = +0.733 au• 2625 kJ/mol / au = 1924 kJ/mol

Notes: (1) Koopman’s Theorem gives only rough approximation
for Ionization Energy

(2) Accurate calculations of the IE or EA require the
use of energies corrected for electron correlation.
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IE(HF)=1514 kJ/mol IE(QCI)=1664 kJ/mol

EA(HF)= -115 kJ/mol

EA(QCI)= -312 kJ/mol


